Voice Control SDK

Vuzix M100 Developer SDK

Ron DiNapoli

Vuzix Corporation
Created: July 22,2015
Last Update: July 22, 2015

W4 84D, 4 Developer Documentation

——

VUZIX 429PB0016.04-01

Introduction

The Vuzix Voice Control SDK allows you to add the ability to navigate your Smart
Glasses application with voice commands. A good voice command system will give
your users the freedom to make the most of your application while leaving their
hands free to perform job related tasks unencumbered by a “hands on” interface.

When writing a voice controlled application, you have two choices. The first choice
is to use the Google SpeechRecognizer API (android.speech.SpeechRecognizer). The
Google SpeechRecognizer API acts as an abstraction layer to multiple different
speech recognition engines. Most of these engines require an active Wifi
connection as the actual speech recognition process is performed in the cloud. The
native speech recognition engine provided by Vuzix on our Smart Glasses (which
performs recognition on a finite set of commands locally and does not use the cloud)
is also interfaced via the Google APIs enabling you to have the most flexibility
possible. The second choice you have is to access the native speech recogniztion
capabilities provided by Vuzix directly. This involves using the Vuzix VoiceControl
class (com.vuzix.speech.VoiceControl) directly. The benefit here is that it cuts out
the abstraction layer and simplifies your code. When implementing a simple set of
voice commands to navigate an application, this is the preferred method.

This document focuses on using the native Vuzix VoiceControl class in your
application. For information on using the Google APIs, please consult the Google
Android SDK documentation for android.speech.SpeechRecognizer.

About Vuzix VoiceControl

Vuzix VoiceControl utilizes a local speech recognition engine—the speech is
processed right on the M100 and is never shipped out to the cloud for processing!
To minimize the resources required for this operation we provide a number of small
“grammars” - each of which contain a number of words that can be recognized by
your application. The default grammar contains basic commands that are used to
control the Smart Glasses from the Home Screen. These commands can be useful in
other applications as well. Additionally, we make grammars available containing
words suitable for the following areas: medical, warehousing, media, camera and
navigation.

When using Vuzix VoiceControl, the “base” or “default” grammar is loaded by
default. This grammar contains the following words/phrases:

* move (left/right/up/down)

Voice Control SDK -2- M100 SDK Documentation

429PB0016.04-01

VUZIX"
go dial
(back/home/left/right/up/do hang up
wn) answer
scroll (left/right/up/down) ignore
call back end
set (clock/time) redial
next contacts
previous favorites
forward pair
halt unpair
select (#) sleep
complete shut down
launch (#) <#>
cancel cut
stop copy
exit paste
menu delete
volume (up/down) voice (on/off)
mute show help
confirm
call

When you start a voice recognition process in your application, these words will be
identified and reported to you by default.

You can also load additional grammars and the Vuzix VoiceControl system will
recognize the “union” of the word sets for each grammar.

Information on how to load the other provided grammars and how to work with us
to create a custom grammar for your application is mentioned later in this
document.

Using Vuzix VoiceControl

Implementing voice control in your M100 application is a relatively simple process.
You will need to create a new class that extends the
com.vuzix.speech.VoiceControl base class (available through the SDK),
know when to turn speech recognition “on” and “off” (programmatically) and

Voice Control SDK -3- M100 SDK Documentation

——

VUZIX"

429PB0016.04-01

override the onRecognition () method to receive data on commands that were
recognized.

Defining your own voice control class can be as simple as this:

import com.vuxiz.speech.VoiceControl;
import android.widget.Toast;

public class MyVoiceControl extends VoiceControl ({
public MyVoiceControl (Context context) {
super (context) ;
}
protected void onRecognition (String result) {
Toast.makeText (this, ”"Received: “+result,
Toast.LENGTH SHORT) .show () ;

This class can be in a separate .java file or can be nested inside another class.

When creating an Android Activity that is going to use voice recognition, it is
customary to allocate an instance of your VoiceControl class in that Activity’s
onCreate () method. This would look something like this:

public class MainActivity extends Activity {
private MyVoiceControl mVC;

@QOverride
protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;

// Set up custom voice control class
mVC = new MyVoiceControl (this);

// Make sure we were able to create mVC
if (mVC == null) {
Toast.makeText (this,”Can’t create mvC”,
Toast.LENGTH SHORT) .show () ;
return;

}

// Turn volice control on

Voice Control SDK -4- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

mvVC.on () ;

// Rest of onCreate () code below..

}
The above example code would allocate an instance of your custom voice control
class and turn on voice recognition whenever your activity is created.

An important aspect of the voice control mechanism to keep in mind is that it can
only be used by one task at a given time. Since the M100’s home screen/launcher
application is also voice-enabled, it is important to turn off voice control when your
application looses focus to avoid any issues/errors that may result from having two
applications attempting to use the voice control mechanism at the same time. This
is best handled by overriding the onPause () and onResume () methods for the
main activity in your application. Also, to play it safe, you should turn off voice
control in the activity’s onDestroy () method in the event that the activity is
destroyed without onPause () being called first.

public class MainActivity extends Activity {
private MyVoiceControl mVC;

@QOverride
protected void onCreate (Bundle savedInstanceState) ({
// see implementation above

}

@Override
protected void onPause () {
if (mvC !'= null) {

mVC.off () ;
}

super.onPause () ;

}

@Override
protected void onResume () {
if (mvC !'= null) {

mvVC.on () ;
}

super.onResume () ;

}

@Override
protected void onDestroy() {
if (mvC !'= null) {

Voice Control SDK -5- M100 SDK Documentation

VUZIX 429PB0016.04-01

mVC.off () ;
}

super.onDestroy () ;

}

One final configuration you must make in your code before being able to use voice
control is to declare that your app requires the RECORD_AUDIO permission. This is
because the M100 will need to record audio and then pass the recorded audio on to
the speech recognition engine. To specify this permission, add the following line of
text to your main AndroidManifest.xmnl file, just before the application tag:

<uses-permission android:name="android.permission.RECORD_AUDIO” />

This covers the basic operation of the Vuzix voice control mechanism. Advanced
features such as switching/adding provided grammars, limiting the words
recognized in a given grammar and creating custom grammars is covered later.

Building a Sample Voice Application for the M100

The following exercise will show you how to build a simple voice application using
Android Studio and running it on your M100. The screen shots shown are taken
from Android Studio running under MacOS X, but they should be accurate for
Android Studio running under Linux or Windows as well.

Begin by making sure you have Android Studio and the Vuzix M100 SDK installed.
Then, launch Android Studio. You should see the following opening screen:

Voice Control SDK -6- M100 SDK Documentation

VUZIX"

429PB0016.04-01

"9 Welcome to Android Studio

Recent Projects Quick Start
=W
=hie Start a new Android Studio project
]

ED Open an existing Android Studio project

No Project Open Yet =
o pe E‘K: Import an Android code sample

V£S Check out project from Version Control

=Nl

P~ Import project (Eclipse ADT, Gradle, etc.)

,48 Configure

[F? Docs and How-Tos

Android Studio 1.2.2 Build 141.1980579. Check for updates now.

Click on the “Start a new Android Studio project” option and advance to the “Create

New Project” window:

Voice Control SDK -7-

M100 SDK Documentation

429PB0016.04-01

Create New Project

New Project

Android Studio

Configure your new project

Application name: I MyVoiceApp |

Company Domain: Idemo.example.com |

Package name: com.example.demo.myvoiceapp Edit

Project location: I /Users /ron/AndroidStudioProjects /MyVoiceApp | E]

. Cancel | Previous ' Next ‘ Finish

Choose a name for your project (such as “MyVoiceApp”) and leave the “Company
Domain” at whatever default value Android Studio chooses for you. You may
change the Project location path if necessary. Then, click “Next”:

Voice Control SDK -8- M100 SDK Documentation

429PB0016.04-01

A Target Android Devices

Select the form factors your app will run on

Different platforms require separate SDKs

121 Phone and Tablet

Minimum SDK | Vuzix M100 Add-On (Vuzix Corporation) (APl 15) 2]

Lower API levels target more devices, but have fewer features
available. By targeting APl 15 and later, your app will run on
approximately 90.4% of the devices that are active on the
Google Play Store. Help me choose..

v

Minimum SDK API 21: Android 5.0 (Lollipop) =
(] Wear

Minimum SDK API 21: Android 5.0 (Lollipop) =

Class (Not Installed)

a»

Minimum SDK

| Cancel | | Previous | | Next | Finish

The key on this screen it to change the “Minimum SDK” from its default value to the
“Vuzix M100 Add-On (Vuzix Corporation) (API 15)” option. If you do not see the
“Vuzix M100 Add-On (Vuzix Corporation) (API 15)” option it means that you do not
have the Vuzix SDK properly installed. Please review the Vuzix Developer
documentation on installing Android Studio (and the SDK) and then try again.

Once you have chosen the proper minimum SDK, click on “Next”. Assuming you are
familiar with Android development, you will see the familiar screen for choosing the
type of Activity you want to have in your application:

Voice Control SDK -9- M100 SDK Documentation

429PB0016.04-01

Create New Project

Add No Activity

Blank Activity

— o — —
Blank Activity with Fragment Fullscreen Activity
B —— A

| Cancel | | Previous | | Next | Finish

For the purposes of this demo, simply choose “Blank Activity” and then click “Next”.
You will then be given the opportunity to customize details about this Activity:

Voice Control SDK -10- M100 SDK Documentation

429PB0016.04-01

Creates a new blank activity with an action bar.

Activity Name: lMainActivity \
Layout Name: lactivity_main ‘
Title: | MainActivity ‘

|

Menu Resource Name: |menu_main

Blank Activity

The name of the activity class to create

| Cancel | | Previous | Next Finish

[t should be fine to leave all of these options at their default values. Click on
“Finish” to complete the configuration of your project.

Once the project is configured by Android Studio, you will be presented with the
main project window:

Voice Control SDK -11- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

J
DHO ¢ XO0 QRAic D> E(Fap-) > ¥ L ¥F $LEF ? Q
"2 MyVoiceApp ' [“app ' [Isrc - [Imain [Jjava ' [*1com . [-] example ' [©] demo ' [myvoiceapp = C MainActivity -
W' Android - (%)

£~ 1= € MainActivity java x '§ activity_main.xml x ‘

A

H m
%' Caapp package com.example.demo.myvoiceapp; v §
G| » [Imanifests 5
® v [java import android.app.Activity; 2
. import android.os.Bundle; S
- v [Z1com.example.demo.myvoic import android.view.Menu; 2
%‘. C & MainActivity import android.view.MenuItem; v
& » [E1com.example.demo.myvoic >
Sl v Py o
* Cares @ public class MainActivity extends Activity { =
[l drawable g
i v [llayout a0verride ®
3 B activi i af rotected void onCreate(Bundle savedInstanceState) {
2 © activity_main.xml P
‘-:1 » Elmenu - super.onCreate(savedInstanceState);
A setContentView(R. layout.activity_main);
~ » [EImipmap }
v > [lvalues
b (2 Gradle Scripts aOverride
af public boolean onCreateOptionsMenu(Menu menu) {
/ Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.menu_main, menu);
return true;
}
"
£ @override
S of
2 /i 1
] s0
* // as you ify a p X
int id = item.getItemId();
@
é //noinspection SimplifiableIfStat
§ if (id R.id.action_settings) {
o return true;
z
— return super.onOptionsItemSelected(item);
Terminal +§ 6: Android = 0: Messages 5» TODO Event Log [Z] Gradle Console
[C] Gradle build finished in 2s 98ms (2 minutes ago) 9:14 LF: UTF-8: & &

You may have to click on the “Project” tab to see this view if it does not appear by
default. You may also need to navigate to the MainActivity classin the
navigation panel in order to see the source code for MainActivity in the main
project window.

Once you have the source code for MainActivity showing, you can begin to
modify it in order to add voice control. Begin by modifying the import statements

to include the classes necessary for implementing voice control. They should look
like this:

Voice Control SDK -12- M100 SDK Documentation

VUZIX"

429PB0016.04-01

import
import
import
import
import

import
import

android.app.Activity;
android.content.Context;
android.os.Bundle;
android.view.Menu;
android.view.Menultem;

com.vuzix.speech.VoiceControl;
android.widget.Toast;

Next, implement a custom VoiceControl class nested in the MainActivity
class. We'll call the custom class MyVoiceControl and its implementation
should look similar to this:

public class MyVo
public MyVoice

iceControl extends VoiceControl {
~Control(Context context) {

super(context);

¥

protected void onRecognition(String result) {
Toast.makeText(MainActivity.this,
"Recognized: "+result,Toast.LENGTH_SHORT).show();

This code will simply display a “short” Toast message (a small text message that
appears as white text on a black background centered about 2/3 of the way down
the device’s screen) containing the word or words that were recognized.

Once MyVoiceControl is implemented, we can modify the default
implementation of MainActivity’s onCreate () method to incorporate our
custom voice control class and turn on the voice recognition mechanism.

Voice Control SDK

-13- M100 SDK Documentation

——
VUZIX" 429PB0016.04-01

private MyVoiceControl mVC;

@verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

'/ Voice control code

mVC = new MyVoiceControl(this);
if (mvC !'= null)

{

b

mVC.on();

In addition to overriding the onCreate () method of MainActivity, remember
that we also need to turn the voice control mechanism on and off when our
application is paused, resumed and ultimately destroyed:

Voice Control SDK -14- M100 SDK Documentation

((-/

VUZIX 429PB0016.04-01

@0verride
public void onPause() {
if (mvC '= null) {

mvVC.off();
¥
super.onPause();
b
@0verride

public void onResume() {
if (mvC !'= null) {

mVC.on();
¥
super.onResume();
¥
@0verride

public void onDestroy() {
if (mvC != null) {
mVC.off();
¥

super.onDestroy();

Finally, we must also modify the AndroidManifest.xml file associated with our
application to request the RECORD_AUDIO permission. This is accomplished by
make use of a uses-permission tagjust before the application section. The
following snippet comes from the top of the AndroidManifest.xml file:

Voice Control SDK -15- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

<?xml version="1.0" encoding="utf-8"7>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.demo.myvoiceapp"” >

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<application
android:allowBackup="true"

At this point our sample application is complete and can be run on an M100. The
standard procedure for running your code on an M100 is to attach the M100 via USB
cable to your development machine and then choosing the “run” option in Android
Studio. However before this will work you must make sure USB debugging is
enabled on the M100.

Enabling USB Debugging on an M100

Before you can run a custom-developed application on an M100, you must make
sure that the M100 has USB Debugging enabled. If it does not, Android Studio will
not “see” the M100 and any attempt to run the code from Android Studio will result
in Android Studio attempting to use an Android Simulator instead of the M100.

Enabling USB Debugging on the M100 is easy. Simply go to the “Settings” panel on
the M100 and scroll all the way down to the “Developer Options” entry. Select this
item to bring up the Developer options settings panel. The first entry in that panel
is called “USB Debugging”. Make sure the checkbox to the right of this item is
checked:

- Developer options

USB debugging

Debug mode when USB is connected

Development device ID
BMPC-DJB4-XES0-Y

Stay awake

Screen will never sleep while charging

Allow mock locations

Allow mock locations

Voice Control SDK -16- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

Once this item is checked, you will be able to run applications from Android Studio
right on the M100. When running any application the utilizes voice recognition first
make sure that voice recognition is enabled (see below).

Enabling Voice Recognition on an M100

Since voice recognition consumes a certain number of resources while running, the
M100 does not have it enabled by default. While you can run a voice enabled
application on the M100 even with voice recognition disabled (the app simply won’t
report any recognized phrases), you must make sure it is on if you’d like the app to
process voice commands! To enabled voice recognition on the M100, find the
“Vuzix Voice Recognition” settings panel in the Settings application:

B 3:24
- Settings

& Security

[Language & input

! Vuzix Voice Recognition

£ Backup & reset

SYSTEM

Select this option and make sure that “Allow voice recognition” is turned “on”:

Voice Control SDK -17- M100 SDK Documentation

429PB0016.04-01

- Vuzix Voice Recognition

VUZIX VOICE RECOGNITION

Allow voice recognition

Apps can use voice recognition

Voice recognition timeout

Voic

Notice that there is a second option in the “Vuzix Voice Recognition” settings panel
called “Vuzix recognition timeout”. Feel free to explore this setting. It controls the
amount of idle time the voice recognizer will wait before turning itself off. =When
the recognizer is off, the microphone icon at the top of the screen is grayed out (it is
green when active). If the voice recognizer ever turns itself off while your app is
running, you can usually restart it by speaking the phrase “voice on”.

Using Additional Standard Grammars

The M100 Voice Control SDK comes with additional grammars that can be loaded at
run time enabling your application to respond to a wider variety of commands. The
M100 SDK comes with six predefined grammars that can be referenced using the
following constants defined in the com.vuzix.speech.Constants class:

* Constants.GRAMMAR BASIC

* Constants.GRAMMAR MEDIA

* Constants.GRAMMAR CAMERA

* Constants.GRAMMAR NAVIGATION
* Constants.GRAMMAR WAREHOUSE
* Constants.GRAMMAR MEDICAL

When starting the voice recognition service the basic grammar is always pre-loaded.
You can also load and unload any of these grammars by using available methods in
the VoiceControl class.

Voice Control SDK -18- M100 SDK Documentation

<~
429PB0016.04-01

VUZIX"

For example, to enable our simple speech recognition example to recognize medical
terms as well as the standard base grammar terms, we could modify the

onCreate () method as follows:

import com.vuzix.speech.VoiceControl;
import com.vuzix.speech.Constants;

public class MainActivity extends Activity {
private MyVoiceControl mVC;

@QOverride
protected void onCreate (Bundle savedInstanceState) ({

super.onCreate (savedInstanceState) ;

// Set up custom voice control class

mVC = new MyVoiceControl (this);

// Add MEDICAL grammar

if (mvVC != null) {
mVC.addGrammar (Constants .MEDICAL) ;

}

// Make sure we were able to create mVC

if (mVC == null) {
Toast.makeText (this,”Can’t create mvC”,

Toast.LENGTH SHORT) .show () ;

return;

}

// Turn volice control on
mvVC.on () ;

// Rest of onCreate() code below..

In addition to adding any of the predefined grammars, you can remove them as well
(except for the base grammar). This is accomplished by using the removeGrammar

method in a manner such as this:
// Remove MEDICAL grammar

if (mvVC != null) {
mVC.removeGrammar (Constants.MEDICAL) ;

M100 SDK Documentation

Voice Control SDK -19-

VUZIX 429PB0016.04-01

Using Additional Custom Grammars

While we strive to provide a broad set of grammars that can be used in multiple
applications (and consider adding new “standard” grammars regularly), you may
wish to develop a voice controlled application that requires commands not covered
in any of the standard grammars. In these situations we do have a process in which
we can create a custom grammar based on a set of words/command structure that
you provide. There may be a fee for this service, please check with your Vuzix
Developer Support representative and/or the Vuzix developer web site for more
information.

When requesting a custom grammar from Vuzix, we will take the set of
words/commands you wish to be able to recognize and return two files to you with
the same base name and different extensions. For example, if we created a custom
grammar for drawing and manipulating shapes on the screen, we might name the
grammar “drawing_custom” and would produce two files with the following names:

* drawing_custom.bnf
* drawing_custom.lcf

Both files are important and should be stored in the assets directory in your code
distribution. Loading the custom grammar is more complicated compared to the
standard grammars as we must load the contents of the . 1cf file into a byte array
and then make use of an overloaded version of the addGrammar () API method.

To accomplish this in the context of our simple speech recognition example, we
could add a private method to the MainActivity class to do the work:

private void loadCustomGrammar () {
final android.content.res.Resources resource =
getResources () ;
final android.content.res.AssetManager assets =
resources.getAssets () ;

try {
final java.io.InputStream fi =
assets.open (“drawing custom.lcf”);

Voice Control SDK -20- M100 SDK Documentation

VUZIX"

429PB0016.04-01

}

byte[] buf = new byte[fi.available()];
while (fi.read(buf) > 0) { }
fi.close();

mVC.addGrammar (buf, “"Drawing Grammar”) ;

catch (java.io.IOException ex) {

}

ex.printStackTrace () ;

Then we’d simply need to add a call to our onCreate () method in
MainActivity toload the grammar, like so:

@QOverride
protected void onCreate (Bundle savedInstanceState)

super.onCreate (savedInstanceState) ;

// Set up custom voice control class
mVC = new MyVoiceControl (this);

if (mvC !'= null) {
loadCustomGrammar () ;

}

// rest of implementation here

{

If you wish to remove a custom grammar, you must do so by using the String name
you gave to the grammar when you loaded it. In our simple example above, the
string name associated with the loaded grammar is “Drawing Grammar”. To
remove it, we'd do the following:

if

(mVC != null) {

mVC.removeGrammar (“Drawing Grammar”) ;

Voice Control SDK -21- M100 SDK Documentation

VUZIX 429PB0016.04-01

Gauging Accuracy of Recognized Speech

When using voice recognition you usually will have no problem when your voice
commands are well enunciated by your users. However you may also notice that
ambient noises and background conversation may sometimes register as words you
are looking for. Even with the basic grammar, the M100 may hear someone say
“mile” and have it register as “dial”. How do you protect against these false
positives?

The VoiceControl API contains a utility method named getConfScore() which is short
for Get Confidence Score. The confidence score is a floating point number between 0
and 1. The higher the number, the more confident the speech recognition engine is
that what it reported is in fact what was said. You can use this score to help filter
out false positives. If, for example, you didn’t want to consider any commands that
didn’t come with a 0.75 confidence score or higher, you could implement your
onRecognition callback as follows:

protected void onRecognition(String result) {

// Check confidence score, throw out anything
// less than 0.75
if (mVC.getConfScore() < 0.75)

return;

Toast.makeText (this, "Received: “+result,
Toast.LENGTH SHORT) .show() ;

Restricting the Number of Words Recognized

Even within the context of a given grammar, there may be situations where you do
not want to detect all the words in the grammar.

Suppose you wanted to write an application that only recognized the words “cut”,
“copy” and “paste”. These are all defined in the base grammar, but so are a bunch
of other words that you do not want to recognize. Or, suppose your application has

a particular activity which, when viewed, only needs to respond to “cut”, “copy” and
“paste”. In either case, you can limit the words recognized (out of the total number

Voice Control SDK -22- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

of words recognizable across all loaded grammars) by providing a word list. A
word list is simply an array of Java String objects which represent the exact words
from the current loaded grammars that you would like to have recognized. This
can be accomplished with the following code:

private void restrictWords () {
// Create array of words to restrict to

String wordlist[] = { “cut”, “copy”, “paste” };

mVC.setWordlist (wordList) ;
}

When operating with a word list in place, you may find that your
onRecognition () callback will still fire with an empty string as the argument
when the speech recognizer detects a word that isn’t on your word list.

To remove the word list restriction, simply call setWordlist () withanull
parameter:

// Remove previous word list restriction

mVC.setWordlist (null) ;

Working with Subsets

Working with subsets
<< TO BE COMPLETED >>

Setting the Recognition Language

The underlying voice recognition technology used on the M100 uses the English
language by default. It also has the theoretical capability of working with a host of
other languages such as French, German, Russian, Polish, Japanese, Spanish and
more!

In order to utilize other languages in the voice recognition system you must obtain
and install a “language model” for the target language as well as any additional

Voice Control SDK -23- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

grammars that have been compiled for that language. If the voice recognizer’s
language model is changed and you attempt to load a grammar that was compiled
for a different language, the voice recognition process will fail.

For more information on how to obtain other language models and custom
grammars to match other languages, please contact your Vuzix Developer Support
representative.

The VoiceControl class uses the following API calls to manipulate the default
recognition language:

* setlLanguage (int language)
* getCurrentlLanguage ()
* getPreviousLanguage ()

The language constants defined are as follows:

* LANG_ CANTONESE HK
* LANG CZECH

* LANG DEFAULT

* LANG DUTCH

* LANG ENGLISH

* LANG_ FRENCH

* LANG GERMAN

* LANG ITALIAN

* LANG JAPANESE

* LANG KOREAN

* LANG MANDARIN CN
* LANG MANDARIN TW
* LANG POLISH

* LANG_ PORTUGUESE
* LANG RUSSIAN

* LANG SPANISH

* LANG SWEDISH

* LANG TURKISH

Getting Debug Information for Voice Control

When running voice enabled applications on the M100, especially applications you
may be in the process of developing, it can sometimes be useful to see what is

Voice Control SDK -24- M100 SDK Documentation

——

VUZIX 429PB0016.04-01

happening at the SDK layer and below with respect to voice recognition. When
running your application from Android Studio the logcat panel in your project
window will usually display all entries that come from your application. This will
include debug messages from the implementation of the VoiceControl class.

However, additional debug information from the underlying voice recognition
engine can be seen if looking at the complete logcat data. This can be seen (along
with a host of other data) by issuing the adb logcat command from your
development machine.

Voice Control SDK -25- M100 SDK Documentation

